Package: SumcaVer1 0.1.0
SumcaVer1: Mean Square Prediction Error Estimation in Small Area Estimation
Estimation of mean squared prediction error of a small area predictor is provided. In particular, the recent method of Simple, Unified, Monte-Carlo Assisted approach for the mean squared prediction error estimation of small area predictor is provided. We also provide other existing methods of mean squared prediction error estimation such as jackknife method for the mixed logistic model.
Authors:
SumcaVer1_0.1.0.tar.gz
SumcaVer1_0.1.0.zip(r-4.5)SumcaVer1_0.1.0.zip(r-4.4)SumcaVer1_0.1.0.zip(r-4.3)
SumcaVer1_0.1.0.tgz(r-4.4-any)SumcaVer1_0.1.0.tgz(r-4.3-any)
SumcaVer1_0.1.0.tar.gz(r-4.5-noble)SumcaVer1_0.1.0.tar.gz(r-4.4-noble)
SumcaVer1_0.1.0.tgz(r-4.4-emscripten)SumcaVer1_0.1.0.tgz(r-4.3-emscripten)
SumcaVer1.pdf |SumcaVer1.html✨
SumcaVer1/json (API)
# Install 'SumcaVer1' in R: |
install.packages('SumcaVer1', repos = c('https://torabi-uofm.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 months agofrom:2220376ad1. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | OK | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | OK | Oct 29 2024 |
R-4.4-mac | OK | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Exports:mspe_FH_Bootmspe_FH_PRmspe_FH_Sumcamspe_LOGISTIC_HealthData_BOOTmspe_LOGISTIC_HealthData_JLWmspe_LOGISTIC_HealthData_SUMCAmspe_MS_LOGISTIC_JLWmspe_MS_LOGISTIC_SUMCAmspe_PMS_FH_DHMmspe_PMS_FH_SUMCAmspe_PMS_Mis_FH_DHMmspe_PMS_Mis_FH_SUMCA
Dependencies:bootGPArotationlatticelme4MASSMatrixminqamnormtnlmenloptrpsychRcppRcppEigen