Package 'SumcaVer1'

Title: Mean Square Prediction Error Estimation in Small Area Estimation
Description: Estimation of mean squared prediction error of a small area predictor is provided. In particular, the recent method of Simple, Unified, Monte-Carlo Assisted approach for the mean squared prediction error estimation of small area predictor is provided. We also provide other existing methods of mean squared prediction error estimation such as jackknife method for the mixed logistic model.
Authors: Mahmoud Torabi [aut, cre], Jiming Jiang [ctb]
Maintainer: Mahmoud Torabi <[email protected]>
License: MIT + file LICENSE
Version: 0.1.0
Built: 2025-01-27 05:10:31 UTC
Source: https://github.com/cran/SumcaVer1

Help Index


MSPE estimation in FH model using double-phase bootstrap method.Calculate the mspe of Fay-Herriot model in SAE using double-phase bootstrap method.

Description

MSPE estimation in FH model using double-phase bootstrap method.Calculate the mspe of Fay-Herriot model in SAE using double-phase bootstrap method.

Usage

mspe_FH_Boot(m, p, X, beta, A, D, B1, B2, R)

Arguments

m

number of small areas

p

number of fixed model parameters

X

covariates

beta

regression coefficients

A

variance of area-specific random effects

D

sampling variance

B1

number of first-phase bootstrap method

B2

number of second-phase bootstrap method

R

number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Boot1.Final: return mspe of small area predictor using the bootstrap method 1

mspe.Boot2.Final: return mspe of small area predictor using the bootstrap method 2

RB.Boot1: return relative bias (RB) of mspe of small area predictor using the bootstrap method 1

RB.Boot2: return relative bias (RB) of mspe of small area predictor using the bootstrap method 2

Examples

mspe_FH_Boot(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2.5,20,20,10)

MSPE estimation in FH model using Prasad-Rao method. Calculate the mspe of Fay-Herriot model in SAE using Prasad-Rao method.

Description

MSPE estimation in FH model using Prasad-Rao method. Calculate the mspe of Fay-Herriot model in SAE using Prasad-Rao method.

Usage

mspe_FH_PR(m, p, X, beta, A, D, R)

Arguments

m

number of small areas

p

number of fixed model parameters

X

Covariates

beta

regression coefficients

A

variance of area-specific random effects

D

sampling variance

R

number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.PR.Final: return mspe of small area predictor using the Prasad-Rao method

RB.PR: return relative bias (RB) of mspe of small area predictor using the Prasad-Rao method

Examples

mspe_FH_PR(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2.5,10)

MSPE estimation in FH model using SUMCA method. Calculate the mspe of Fay-Herriot model in SAE using Sumca method.

Description

MSPE estimation in FH model using SUMCA method. Calculate the mspe of Fay-Herriot model in SAE using Sumca method.

Usage

mspe_FH_Sumca(m, p, X, beta, A, D, K, R)

Arguments

m

number of small areas

p

number of fixed model parameters

X

covariates

beta

regression coefficients

A

variance of area-specific random effects

D

sampling variance

K

number of Monte Carlo for the SUMCA method

R

number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Sumca.Final: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

Examples

mspe_FH_Sumca(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2.5,10,10)

MSPE estimation in mixed logistic model (Health Insurance data) using bootstrap method. Calculate the mspe of mixed logistic model (Health Insurance data) using bootstrap method.

Description

MSPE estimation in mixed logistic model (Health Insurance data) using bootstrap method. Calculate the mspe of mixed logistic model (Health Insurance data) using bootstrap method.

Usage

mspe_LOGISTIC_HealthData_BOOT(
  m,
  p,
  n.new,
  y.new,
  cum.n.new,
  Xi,
  yi.tem,
  X.tem,
  county.tem,
  B
)

Arguments

m

number of domains

p

number of complete model parameters

n.new

sample size of each domain

y.new

response variable

cum.n.new

Cummulaticve sum of n

Xi

covariates

yi.tem

response variable for each individual

X.tem

Individual level covariates

county.tem

county

B

number of bootstrap iterations

Value

Par: return estimation of model parameters

Mu.hat: return prediction of domain parameters

mspe.boot: return mspe of small area (domain) predictor using the bootstrap method

sq.mspe.boot: return square root of mspe of small area predictor for non-zero domains using the bootstrap method

Examples

mspe_LOGISTIC_HealthData_BOOT(20,3,c(2,1,2,2,1,2,3,1,1,3,1,3,2,3,3,
1,2,1,3,3),c(3,4,2,2,3,3,4,3,4,1,4,1,3,5,4,7,1,3,1,2),c(2,3,5,7,8,10,13,14,15
,18,19,22,24,27,30,31,33,34,37,40),
matrix(runif(60,0,1),nrow=20,byrow=TRUE),sample(c(0,1),replace=TRUE,40),
matrix(c(runif(40,7,10),runif(40,14,22),runif(40,2,4)),nrow=40,byrow=FALSE),
rep(1:20,each=2),10)

MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method.Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.

Description

MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method.Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.

Usage

mspe_LOGISTIC_HealthData_JLW(
  m,
  p,
  n.new,
  y.new,
  Xi,
  yi.tem,
  cum.n.new,
  county.tem,
  X.tem
)

Arguments

m

number of domains

p

number of complete model parameters

n.new

sample size of each domain

y.new

response variable

Xi

covariates for each domain

yi.tem

response variable for each individual

cum.n.new

Cummulative sum of n

county.tem

county

X.tem

Individual level covariates

Value

Par: return estimation of model parameters

Mu.hat: return prediction of domain parameters

mspe.JLW: return mspe of small area (domain) predictor using the jackknife method

sq.mspe.JLW: return square root of mspe of small area predictor for non-zero domains using the jackknife method

Examples

mspe_LOGISTIC_HealthData_JLW(20,3,c(2,1,2,2,1,2,3,1,1,3,1,3,2,3,3,
1,2,1,3,3),c(3,4,2,2,3,3,4,3,4,1,4,1,3,5,4,7,1,3,1,2),
matrix(runif(60,0,1),nrow=20,byrow=TRUE),sample(c(0,1),replace=TRUE,40),
c(2,3,5,7,8,10,13,14,15,18,19,22,24,27,30,31,33,34,37,40),rep(1:20,each=2),
matrix(c(runif(40,7,10),runif(40,14,22),runif(40,2,4)),nrow=40,byrow=FALSE))

MSPE estimation in mixed logistic model (Health Insurance data) using SUMCA method.Calculate the mspe of mixed logistic model (Health Insurance data) using SUMCA method.

Description

MSPE estimation in mixed logistic model (Health Insurance data) using SUMCA method.Calculate the mspe of mixed logistic model (Health Insurance data) using SUMCA method.

Usage

mspe_LOGISTIC_HealthData_SUMCA(
  m,
  p,
  n.new,
  y.new,
  Xi,
  cum.n.new,
  yi.tem,
  X.tem,
  county.tem,
  K
)

Arguments

m

number of domains

p

number of complete model parameters

n.new

sample size of each domain

y.new

response variable

Xi

covariates

cum.n.new

Cummulative sum of n

yi.tem

response variable for each individual

X.tem

Individual level covariates

county.tem

county

K

number of Monte Carlo for the SUMCA method

Value

Par: return estimation of model parameters

Mu.hat: return prediction of domain parameters

mspe.Sumca: return mspe of small area (domain) predictor using the SUMCA method

sq.mspe.Sumca: return square root of mspe of small area predictor for non-zero domains using the SUMCA method

Examples

mspe_LOGISTIC_HealthData_SUMCA(20,3,c(2,1,2,2,1,2,3,1,1,3,1,3,2,3,
3,1,2,1,3,3),c(3,4,2,2,3,3,4,3,4,1,4,1,3,5,4,7,1,3,1,2),
matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(2,3,5,7,8,10,13,14,15
,18,19,22,24,27,30,31,33,34,37,40),sample(c(0,1),replace=TRUE,40),
matrix(c(runif(40,7,10),runif(40,14,22),runif(40,2,4)),nrow=40,byrow=FALSE),
rep(1:20,each=2),10)

Model selection MSPE estimation in mixed logistic model using jackknife method.Calculate the model selection mspe of mixed logistic model using jackknife method.

Description

Model selection MSPE estimation in mixed logistic model using jackknife method.Calculate the model selection mspe of mixed logistic model using jackknife method.

Usage

mspe_MS_LOGISTIC_JLW(m, p, ni, X, beta, A, R)

Arguments

m

number of small areas

p

number of complete model parameters

ni

sample size of each small area

X

covariates for the complete model

beta

regression coefficients of the complete model

A

variance of area-specific random effects

R

number of simulation runs

Value

Par1: return estimation of model parameters of the complete model

Par2: return estimation of model parameters of the reduced model

MSPE: return empirical MSPE of small area predictor

mspe.JLW: return mspe of small area predictor using the jackknife method

RB.JLW: return relative bias (RB) of mspe of small area predictor using the jackknife method

BIC: return BIC of the complete and reduced models

Examples

mspe_MS_LOGISTIC_JLW(20,3,2,
matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,2)

Model selection MSPE estimation in mixed logistic model using SUMCA method. Calculate the model selection mspe of mixed logistic model using SUMCA method.

Description

Model selection MSPE estimation in mixed logistic model using SUMCA method. Calculate the model selection mspe of mixed logistic model using SUMCA method.

Usage

mspe_MS_LOGISTIC_SUMCA(m, p, ni, X, beta, A, K, R)

Arguments

m

number of small areas

p

number of complete model parameters

ni

sample size of each small area

X

covariates for the complete model

beta

regression coefficients of the complete model

A

variance of area-specific random effects

K

number of Monte Carlo for the SUMCA method

R

number of simulation runs

Value

Par1: return estimation of model parameters of the complete model

Par2: return estimation of model parameters of the reduced model

MSPE: return empirical MSPE of small area predictor

mspe.Sumca: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

BIC: return BIC of the complete and reduced models

Examples

mspe_MS_LOGISTIC_SUMCA(20,3,2,matrix(runif(60,0,1),nrow=20,byrow=TRUE),c(1,1,1),10,5,5)

Post model selection MSPE estimation in FH model using Datta-Hall-Mandal method. Calculate the post-model selection mspe of Fay-Herriot model using Datta-Hall-Mandal method.

Description

Post model selection MSPE estimation in FH model using Datta-Hall-Mandal method. Calculate the post-model selection mspe of Fay-Herriot model using Datta-Hall-Mandal method.

Usage

mspe_PMS_FH_DHM(m, p, X, beta, A, D, R)

Arguments

m

number of small areas

p

number of fixed model parameters

X

covariates

beta

regression coefficients

A

variance of area-specific random effects

D

sampling variance

R

number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.DHM.Final: return mspe of small area predictor using the Datta-Hall-Mandal method

RB.DHM: return relative bias (RB) of mspe of small area predictor using the Datta-Hall-Mandal method

Rate: return the probability of rejection (nominal level= 0.2)

Examples

mspe_PMS_FH_DHM(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),
c(1,1,1),10,2.5,10)

Post model selection MSPE estimation in FH model using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model using SUMCA method.

Description

Post model selection MSPE estimation in FH model using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model using SUMCA method.

Usage

mspe_PMS_FH_SUMCA(m, p, X, beta, A, D, K, R)

Arguments

m

number of small areas

p

number of fixed model parameters

X

covariates

beta

regression coefficients

A

variance of area-specific random effects

D

sampling variance

K

number of Monte Carlo for the SUMCA method

R

number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Sumca.Final: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

Examples

mspe_PMS_FH_SUMCA(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),
c(1,1,1),10,2.5,10,10)

Post model selection MSPE estimation in FH model with mean mis-specification using Datta-Hall-Mandal method. Calculate the post-model selection mspe of Fay-Herriot model with mean mis-specification using Datta-Hall-Mandal method.

Description

Post model selection MSPE estimation in FH model with mean mis-specification using Datta-Hall-Mandal method. Calculate the post-model selection mspe of Fay-Herriot model with mean mis-specification using Datta-Hall-Mandal method.

Usage

mspe_PMS_Mis_FH_DHM(m, p, X, beta1, beta2, A, D, R)

Arguments

m

number of small areas

p

number of fixed model parameters

X

covariates

beta1

regression coefficients

beta2

regression coefficients

A

variance of area-specific random effects

D

sampling variance

R

number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.DHM.Final: return mspe of small area predictor using the Datta-Hall-Mandal method

RB.DHM: return relative bias (RB) of mspe of small area predictor using the Datta-Hall-Mandal method

Rate: return the probability of rejection (nominal level= 0.2)

Examples

mspe_PMS_Mis_FH_DHM(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),
c(1,1,1),c(1,1,1),10,2.5,10)

Post model selection MSPE estimation in FH model with mean mis-specification using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model with mean mis-specification using SUMCA method.

Description

Post model selection MSPE estimation in FH model with mean mis-specification using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model with mean mis-specification using SUMCA method.

Usage

mspe_PMS_Mis_FH_SUMCA(m, p, X, beta1, beta2, A, D, K, R)

Arguments

m

number of small areas

p

number of fixed model parameters

X

covariates

beta1

regression coefficient

beta2

regression coefficient

A

variance of area-specific random effects

D

sampling variance

K

number of Monte Carlo for the SUMCA method

R

number of simulation runs

Value

Par: return estimation of model parameters

MSPE.TRUE.Final: return empirical MSPE of small area predictor

mspe.Sumca.Final: return mspe of small area predictor using the SUMCA method

RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method

Examples

mspe_PMS_Mis_FH_SUMCA(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE)
,c(1,1,1),c(1,1,1),10,2.5,10,10)